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NOMENCLATURE 

Gr, Grashof  number;  
r, radial coordinate; 
ro, radius of cylinder; 
7", absolute temperature of air in the convective flow; 
Tw, constant wall temperature; 
T~, temperature of ambient air; 
z, vertical or axial coordinate; 
q, non-dimensional radial coordinate; 
®, =(T-T,)/(T,, .-T,~); 
~, non-dimensional axial coordinate. 

INTROI)U(TION 

OPTICAL interfcrometry is u well established method for 
the quantitative study of the density field in natural con- 
vective flows [1]. With these techniques, no probe is in- 
serted into the flow which is very sensitive to external dis- 
turbances. Sernas and Fletcher [2] applied a simple 
Wollaston prism schlieren interferometer [3, 4] to the study 
of the natural convective flow along a heated, vertical flat 
plate. This interferometric system can be classified as a 
shearing interfcromcter [5] and responds to changes of the 
gas density gradient in the object field. For the case of a 
two-dimensiomll test object, like the flow along the heated 
flat plate, the observed shift of the interference fringes is 
directly proportional to the density gradient normal to the 
undisturbed fringes, or proportional to the temperature 
gradient in the case of the natural convective flow. Hence, 
this is an easy way to determine the heat-transfer coefficient 
at the heated vertical wall. 

In the case of a test field with an axisymmetric density 
distribution, the gas density varies along the path of a light 
ray in the interferometric system, and the information on 
the flow field is integrated along the path of the light ray. 
The aim of the present investigations was to study the 
temperature field in the natural convective air flow along 
a heated, vertical cylinder, which represents such an axi- 
symmetric optical test field, and to compare the measured 
temperature profiles with existing theoretical predictions. 

MEASUREMENTS ANI) COMPARISON WITH THEORY 

The cylinders investigated were made of copper and filled 
with water which was held at a constant temperature about 
40 'C  above the ambient room temperature. The convective 
air flow along the outcr wall of the cylinder can then be 
regarded to occur along a constant temperature wall. This 
assumpt ion  is supported by Sernas" and Fletcher's measure- 
ments performed with thermocouples [2]. Several cylinders 
were tested, all having the same height of 25cm. The 
Wollaston prism shearing interferometer used for the 
measurements  was operated with parallel light through the 
test field, the light direction being normal to the cylinder 

axis. Figure 1 is a typical interferogram which shows the 
distortion of the interference fringes m the zone of varying 
gas density close to the cylinder wall. A numerical pro- 
cedure for the evaluation of such an axisymmetric shearing 
interferogram is described in [6]. This procedure yields the 
density as a function of the axisymmetric coordinate r, 
and since the pressure is assumed here to be constant  in 
a horizontal plane z = constant,  one easily obtains the 
temperature distribution T = T(r) in a cross-section z = 
constant  normal to the cylinder axis. 

In Fig. 2 the experimental results for three cylinders are 
plotted in a coordinate system which is chosen according 
to the coordinates used in the theoretical predictions of 
the temperature field. O=(T-T~o)/(Tw-T~) is a non- 
dimensional temperature difference, where T designates the 
temperature at the radius r in a plane z = constant  of the 
test field. The abscissa 

1 1 r 2 - r 2 
~ / -  23/2 'z '  ~2 ° (Grz)l/'* 

is primarily the non-dimensional  radial coordinate which 
also includes the axial coordinate z and the Grashof  number  
Grz formed with the axial coordinate z. O decreases from 
the value Ow = 1 at the cylinder wall to zero in a great 
distance from the cylinder. The measurements  have been 
performed at various heights z for each cylinder. 

The experimental results have been. compared with 
theoretical predictions obtained by Sparrow and Gregg [7] 
and by Viskanta [8]. The temperature difference O is ex- 
pressed as a power series of the non-dimensional  axial 
coordinate 

O(~, ~l) = O0(~/) + ~, Ol(r/) + ~ 2 . 0 2 @  + . . .  

with 
2 3/2 2" 

(Grz) a/4" ro" 

The coefficients Oi depend on the coordinate ~/only. O0 is 
the solution for the temperature field near the heated 
vertical flat plate. Only the zeroth order and the linear term 
have been evaluated in the representation of Fig. 2. The 
curves for cylinders with different radii do not coincide. 
The temperature curve for the cylinder with the greatest 
radius investigated (r0 = 10cm) nearly coincides with the 
solution for the flat plate. The relative error between the 
measured and calculated values is small. But there appears 
a general difference in the pattern of the experimental and 
theoretical curves. The experimental curves obviously ex- 
perience a change in curvature near the cylinder wall which 
is not predicted by the theory. This discrepancy also exists 
for the flat plate case, Then, the max imum of the distorted 
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FIO. 1. Shearing interferogram obtained from the convective air flow along a heated vertical cylinder. 
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FK;. 2. Non-dimensional representation of the temperature field. 

interference fringes near the wall (see Fig. 3 of [2]) exactly 
designates the position of the change of curvature in the 
temperature profiles. The temperaturc gradient at the wall, 
as obtained from the optical measurements, is therefore 
smaller than predicted by theory, and the same applies to 
the heat-transfer coefficient at the wall. A temperature 
profile with such a change in curvature is only predicted 
theoretically for a wall with a step discontinuity in surface 
temperature [9], but the thoroughful measurements of 
Sernas and Fletcher [2] exclude such an inhomogeneous 
wall temperature for the experiments reported in this note. 
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N O M E N C L A T U R E  

number  of transfer units per unit of coordinate x; 
column vector of K; 
common  perimeter of channels i and j ;  
overall surface conductance for heat transfer 
between channels i and j ;  
number  of channels;  
temperature of fluid in channel i; 
space coordinate along the channel ; 
column vector; 
coefficient matrix ; 
diagonal matrix; 
n × n matrix; 
n × n symmetric matrix; 
temperature column vector, t = It1, t2 , . . . ,  t , ] r ;  
fluid heat capacity rate. 

CONSIDER the equation 

dt 
= A t  (1) 

dx 

where t is the column matrix of temperature and A is a 
square, non-block diagonal matrix of order n and of rank 
equal to n -  1 [1] defined by 

~t : a l l a l 2 . . . a l n  

_a°la°211 12t 

k i jh l j  
aij - (i :/: j, kljhi~ = kjihjl) 

1 n 

a i i :  - -  ~ .i "= ki ihi)  (klihll : 0) .  

The solution t depends on the features of the coefficient 
matrix A. 

The properties of A have been discussed by other authors. 
For example in [2, 3] it is shown that all the latent roots 

are real and in [1] it is proved that the necessary and 
sufficient condition for A to have at least two zero latent 
roots is 

n 

E w,=o. 
i=1 

It results from the foregoing, that to characterize the 
spectrum of A one problem still remains, namely the maxi- 
mum multiplicity of zero latent roots. 

Two lemmas will be helpful in answering this question. 

Lemma 1 
If S = [slj] is a symmetric matrix of order n, x = (xl . . . . .  x,) 

any column vector and y a proper vector of S corresponding 
to zero latent root, then the scalar product 

(Sx, y) = 0. 

The proof depends on the property of a symmetric matrix 
that 

(Sx, y) = (x, Sy)  = (x, 0) = 0. 

Lemma 2 
I fx  and S are given as in lemma 1 and S is a semidefinite 

matrix (positive or negative), then only a proper vector, say 
x, of S appropriate to a zero latent root satisfying 

S x =  0, 

may be a non-trivial solution of the equation 

(Sx ,  x) = (x, S x )  = 0. 

Proof  
Let S be negative semidefinite. Then it follows that 

(Sx, x) ~< 0; 

furthermore 
n 

(Sx,  x) = y .  s , jx,xs 
i , j= l  

is a continuous function of the n variables x l ,  x2 . . . .  , x .  
possessing continuous first and second partial derivatives. 


